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Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). The
discovery of the angiotensin-converting enzyme homologue ACE2 revealed important metabolic pathways involved in the Ang-
(1–7) synthesis. This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1–9) with
subsequent Ang-(1–7) formation. Additionally, it is well established that the G protein-coupled receptor Mas is a functional ligand
site for Ang-(1–7). The axis formed by ACE2/Ang-(1–7)/Mas represents an endogenous counter regulatory pathway within the
RAS whose actions are opposite to the vasoconstrictor/proliferative arm of the RAS constituted by ACE/Ang II/AT1 receptor. In
this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1–7)/Mas arm in the cardiovascular
and pulmonary system. Also, we will highlight the initiatives to develop potential therapeutic strategies based on this axis.

1. Introduction

The renin-angiotensin system (RAS) plays a key role in
several target organs, such as heart, blood vessels, and lungs,
exerting a powerful control in the maintenance of the home-
ostasis [1–4]. This system is activated by the conversion of the
angiotensinogen to the inactive peptide angiotensin (Ang) I
through the renin action [5]. Subsequently, Ang I is cleaved
by the angiotensin-converting enzyme (ACE) generating
Ang II [6], the main angiotensin peptide, whose actions
are mediated by two G protein-coupled receptors (GPCR),
AT1 and AT2 [7, 8] (Figure 1). The major physiological
functions of Ang II are mediated by AT1 receptor [9, 10]. In
pathological conditions, activation of this receptor induces
deleterious effects, such as vasoconstriction, fibrosis, cellular

growth and migration, and fluid retention [11, 12]. On the
other hand, Ang II binding to the AT2 receptor generally
causes opposite effects when compared with those actions
mediated by the AT1 receptor [13, 14].

Recently, it has been proposed that, in addition to the
ACE/Ang II/AT1 receptor axis, the RAS possesses a counter
regulatory axis composed by ACE2, Ang-(1–7), and Mas
receptor (Figure 1). Ang-(1–7) is a biologically active com-
ponent of the RAS which binds to Mas inducing many
beneficial actions, such as vasodilatation, antifibrosis, and
antihypertrophic and antiproliferative effects [15–23]. This
peptide is produced mainly through the action of ACE2,
which has approximately 400-fold less affinity to Ang I than
to Ang II [24–26]; thereby, Ang II is the major substrate
for Ang-(1–7) synthesis. In fact, the conversion of Ang II to

mailto:anderson@icb.ufmg.br


2 International Journal of Hypertension

Angiotensinogen

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-. . .

Angiotensin I

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu

Renin

ACE2

Angiotensin-(1–9)
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His

ACE, NEPPEP, NEP

ACE

Angiotensin-(1–5)

Asp-Arg-Val-Tyr-Ile

Tonin, Catepsin G

Catepsin A, Chymase

Angiotensin II

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

Angiotensin-(1–7)

Asp-Arg-Val-Tyr-Ile-His-Pro

Prorenin

Inactive kinin

Bradykinin

Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg

ACE

Proliferation

Hypertrothy

Fibrosis

Infammation

Endothelial dysfunction

Oxidative stress

Apoptosis

AT1 AT2 Mas

ACE2

ACE

ffCounterregulatory e ects

Figure 1: Schematic representation of the renin-angiotensin system (RAS) cascade. The counterregulatory axes of the RAS are composed by
ACE/Ang II/AT1 and ACE2/Ang-(1–7)/Mas. ACE: angiotensin-converting enzyme; Ang: angiotensin; AT1: Ang II type 1 receptor; AT2: Ang
II type 2 receptor; Mas: Ang-(1–7) receptor; PCP: prolylcarboxypeptidase; PEP: prolyl-endopeptidase; NEP: neutral-endopeptidase 24.11.

Ang-(1–7) by ACE2 is important to regulate the RAS activity
since Ang-(1–7) induces opposite effects to those elicited by
Ang II [16–24]. Additionally, ACE2 can form Ang-(1–7) less
efficiently through hydrolysis of Ang I to Ang-(1–9) with
subsequent Ang-(1–7) formation [24].

The relevance of the RAS is highlighted by the success
obtained in therapeutic strategies based on the pharma-
cological inhibition of this system in cardiovascular and
respiratory diseases [27–32]. Blockade of the RAS with
ACE inhibitors (ACEi) or AT1 receptor antagonists (ARBs)
improves the outcomes of patients with hypertension, acute
myocardial infarction, and chronic systolic heart failure [33–
35]. Furthermore, based on the involvement of the ACE/Ang
II/AT1 axis in respiratory diseases and the crucial role of the
lungs in the RAS metabolism, several studies have reported
the contribution of the RAS in lung pathophysiology [28, 30,
31, 36–40]. Importantly, it has been shown that administra-
tion of ACEi and ARBs causes substantial increases in plasma
Ang-(1–7) levels, leading to the assumption that part of their

clinical effects might be mediated by this heptapeptide [41–
43]. Indeed, some effects of ACEi and ARBs can be blocked
or attenuated by A-779, a Mas antagonist, confirming the
role of Ang-(1–7) in the actions of these compounds [44].
The beneficial effects of Ang-(1–7), as well as its likely
participation in the effects of the ACEi and ARBs, represent
evidences for the potential of the ACE2/Ang-(1-7)/Mas axis
as a therapeutic target.

In this review, we will focus on the recent findings related
to the pathophysiology actions of the ACE2/Ang-(1–7)/Mas
axis in the cardiovascular and respiratory system. Also,
we will discuss the promising initiatives to develop new
therapeutic strategies based on this axis to treat pathological
conditions.

2. Cardiac ACE2/Ang-(1–7)/Mas Axis

The heart is one of the most important targets for the
actions of the ACE2/Ang-(1–7)/Mas axis. In the heart, ACE2
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is expressed in the endothelium [45], myofibroblasts [46],
cardiomyocytes, and fibroblasts [47, 48]. Classical pharma-
cotherapeutic agents used to treat heart failure, including
ACEi, ARBs, and aldosterone receptor blockers, increase
ACE2 activity and/or expression, indicating its importance in
the cardiac diseases establishment and progression [49–51].

Additionally, pharmacological and genetic (transgenic
animals and gene transfer) approaches have evidenced the
significance of ACE2 in cardiac pathologies. Despite some
controversies concerning the consequences of the ACE2
deficiency, in general, evidences indicate a protective role of
ACE2 in the heart [48, 52–57]. Crackower and colleagues
[52] were the first to demonstrate that genetic ablation of
ACE2 results in severe blood-pressure-independent systolic
impairment. Also, disruption of ACE2 was able to accelerate
cardiac hypertrophy and shortened the transition period to
heart failure in response to pressure overload by increasing
local Ang II [54]. Recently, it has been demonstrated that loss
of ACE2 enhances the susceptibility to myocardial infarction,
with increased mortality, infarct expansion and adverse
ventricular remodeling [56]. In keeping with these genetic
findings, pharmacological inhibition of ACE2 exacerbated
cardiac hypertrophy and fibrosis in Ren-2 hypertensive
rats [58]. On the other hand, cardiac overexpression of
ACE2 prevented hypertension-induced cardiac hypertrophy
and fibrosis in spontaneously hypertensive rats (SHR) and
in Ang-II-infused rats [59, 60]. Indeed, transfection of
Lenti-ACE2 (lentivirus containing ACE2 cDNA) or Ad-
ACE2 (recombinant adenovirus carrying the murine ACE2)
into the surrounding area of the infarcted myocardium
was protective against pathological remodeling and cardiac
systolic dysfunction in a rat model of myocardial infarction
[61, 62]. This effect was associated with decreased expression
of ACE and Ang II and increased expression of Ang-(1–
7) [62]. Collectively, these observations reveal that ACE2
effectively plays a protective role in the cardiac structure and
function.

Since the discovery of Ang-(1–7) in the late 1980s [63,
64], several studies have demonstrated important effects
of this peptide in hearts. The presence of Ang-(1–7) and
its receptor Mas in the heart [65, 66] and the ability of
this organ to produce Ang-(1–7) [55, 67] are evidences
of the role of this peptide in cardiac tissues. Functionally,
Ang-(1–7) induces an antiarrhythmogenic effect against
ischemia/reperfusion injuries in rats [17, 68] as well as
prevents atrial tachycardia and fibrillation in rats and dogs
[69, 70]. Treatment with Ang-(1–7) improved the coronary
perfusion and cardiac function in rats after myocardial
infarction [71] and after ischemia/reperfusion injury [72].
Increases in circulating Ang-(1–7) levels in transgenic rats
reduced the cardiac hypertrophy [17] and fibrosis [20,
22] induced by isoproterenol administration. These effects
are apparently independent of changes in blood pressure
since Grobe and colleagues [18] have demonstrated that
the antifibrotic and antihypertrophic actions of Ang-(1–
7) are still observed in Ang-II-infused hypertensive rats.
Local overexpression of Ang-(1–7) in hearts of mice and
rats improved the myocardial contractility and prevented the

isoproterenol- and hypertension-induced cardiac remodel-
ing [19, 21]. Altogether, these findings support a direct effect
of Ang-(1-7) in the heart.

Further evidence for the role of Ang-(1–7)/Mas in the
pathophysiology of the heart came from experimental pro-
tocols utilizing mice with genetic deficiency of Mas. They
revealed that the cardiac function is impaired in Mas knock-
out mice likely due to the increased extracellular matrix
proteins deposition in the heart [66, 73]. This profibrotic
phenotype may be related to changes in matrix metallopro-
teinases (MMPs) and tissue inhibitors of metalloproteinases
(TIMPs) levels and/or activities [74, 75].

Although further elucidations regarding the signaling
pathways involved in Mas activation are necessary, some
mechanisms have been proposed. Overexpression of Ang-
(1–7) in hearts of rats causes an improvement in the [Ca2+]
handling in cardiomyocytes and increases the expression of
SERCA2a [21]. In keeping with these results, cardiomyocytes
from Mas-deficient mice present slower [Ca2+]i transients
accompanied by a lower Ca2+ ATPase expression in the
sarcoplasmic reticulum [66, 76]. Although acute Ang-(1–
7) treatment failed to alter Ca2+ handling in ventricular
myocytes of rats [76], these findings suggest an important
role of the Ang-(1–7)/Mas in the long-term maintenance of
the Ca2+ homeostasis in the heart.

One of the mechanisms by which Ang-(1–7) plays its
effects in the heart is stimulating the nitric oxide (NO) pro-
duction. Indeed, it has been demonstrated that Ang-(1–7)
via Mas increases the synthesis of NO through a mechanism
involving the activation of the endothelial NO synthase
(eNOS). These effects were abolished by A-779 and are
absent in cardiomyocytes from Mas-deficient mice [76].
Recently, Gomes et al. [77] found that the treatment of
isolated cardiomyocytes of rats with Ang-(1–7) efficiently
prevents the Ang-II-induced hypertrophy by modulating
the calcineurin/NFAT signaling cascade. These effects were
blocked by NO synthase inhibition and by guanylyl cyclase
inhibitors, indicating that these effects are mediated by the
NO/cGMP pathway.

Also, Ang-(1–7) inhibits serum-stimulated mitogen-ac-
tivated protein kinase (MAPK) activation in cardiac my-
ocytes [78] and prevents the Ang-II-mediated phospho-
rylation of ERK1/2 and Rho kinase in hearts in a dose-
dependent manner [79]. In line with these data, activation of
endogenous ACE2 significantly reduced the phosphorylation
of ERK1/2 in hearts of hypertensive rats (SHRs) [48].
However, Mercure et al. [19] reported that overexpression
of Ang-(1–7) in hearts of rats decreases the Ang-II-induced
phosphorylation of c-Src and p38 kinase, whereas the
increase in ERK1/2 phosphorylation was unaffected by the
expression of the transgene, thereby suggesting a selective
effect of Ang-(1–7) on intracellular signaling pathways
related to cardiac remodeling.

Overall, these data reveal a key role of the ACE2/Ang-(1–
7)/Mas axis in the pathophysiology of the cardiac structure
and function. Activation of this axis might be an important
strategy to develop a new generation of cardiovascular ther-
apeutic agents against cardiac dysfunction and pathological
remodeling of the heart.
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3. Vascular ACE2/Ang-(1–7)/Mas Axis

Early studies have reported the endothelium as the major
site for generation [67] and metabolism [41] of Ang-(1–
7). In addition to Ang-(1–7), endothelial cells also express
ACE2 and Mas [80, 81]. Thus, now it is recognized that the
ACE2/Ang-(1–7)/Mas axis is present in vascular endothelial
cells and modulates its function promoting vasorelaxation
[82], reduction of the oxidative stress [83, 84], and antipro-
liferative effects [85, 86].

The vasodilatory actions of Ang-(1–7) have been re-
ported in many studies in several vascular beds and prepa-
rations, including mouse [16, 23] and rat [15] aortic rings,
canine [87] and porcine [88] coronary arteries, canine
middle cerebral artery [89], porcine piglet pial arterioles
[90], feline mesenteric vascular bed [91], rabbit renal afferent
arterioles [92], and mesenteric microvessels of normotensive
[93] and hypertensive [94] rats. Vascular Ang-(1–7) actions
are still controversial in human. For example, it has been
shown that Ang-(1–7) causes vasodilation in forearm circu-
lation of normotensive subjects and patients with essential
hypertension [95] while other studies were unable to report
any significant effect of Ang-(1–7) in the same vascular
territory in ACEi-treated patients [43].

The Mas receptor is critically involved in the vascular
effects of Ang-(1–7). In fact, many of these actions are com-
pletely abolished by A-779 or partially blocked by this antag-
onist [3, 86, 96]. Importantly, the endothelium-dependent
relaxation induced by Ang-(1–7) in mouse aortic rings is
absent in vessels derived from Mas-knockout mice [16].
However, other studies have shown that Ang-(1–7) also
interacts with ACE, AT1, and AT2-like receptors, suggesting
the existence of additional sites of interaction for Ang-(1–7)
[3, 97, 98]. Indeed, Silva et al. [99] reported evidence for the
presence of a distinct subtype of Ang-(1–7) receptor sensible
to D-pro7-Ang-(1–7), a second Mas antagonist, but not to
A-779 in aortas of Sprague-Dawley rats.

The vascular effects of Ang-(1–7) are endothelium
dependent and involve the production of vasodilator prod-
ucts, such as prostanoids, NO, and endothelium-derived
hyperpolarizing factor (EDHF) [16, 81, 100]. Pinheiro
and coworkers [101] found that Ang-(1–7) promotes an
increase in NO release in Mas-transfected chinese hamster
ovary (CHO) cells [101]. Furthermore, short-term infu-
sion of Ang-(1–7) improved the endothelial function by
a mechanism involving NO release in rats [102]. Mas
deletion resulted in endothelial dysfunction associated with
an unbalance between NO and oxidative stress [83]. Also,
Mas activation by Ang-(1–7) in human endothelial cells
stimulated eNOS phosphorylation/activation via the Akt-
dependent pathway [81]. Other mechanisms appear to be
involved in the Ang-(1–7) vascular actions. Roks et al. [103]
have shown that Ang-(1–7) inhibits the vasoconstriction
induced by Ang II in human internal mammary arteries,
thereby suggesting that Ang-(1–7) can regulate the Ang II
effects [103]. In fact, Ang-(1–7) negatively modulates the
Ang II type 1 receptor-mediated activation of c-Src, and its
downstream targets ERK1/2 and NAD(P)H oxidase [104].
The counterregulatory action of Ang-(1–7) on Ang II

signaling has been also observed in cardiomyocytes [77],
vascular smooth muscle cells [105], and fibroblasts [106].
Additionally, an interaction between Mas and bradykinin
(Bk) type 2 (B2) receptors may modulate some of the Ang-
(1–7) effects in blood vessels [107]. Indeed, it has been
demonstrated that Ang-(1–7) potentiates the vasodilator and
hypotensive effects of Bk in several vascular beds [93, 108–
110].

As the major enzyme involved in Ang-(1–7) formation,
ACE2 has also a crucial role in vessels. Lovren et al. [111]
have demonstrated that ACE2 ameliorates the endothelial
homeostasis via a mechanism involving reduction of the
reactive oxygen species production [111]. Of note, this effect
was attenuated by A-779 [111]. Moreover, overexpression of
ACE2 in vessels of hypertensive rats resulted in reduction
in the arterial blood pressure and improvement of the
endothelial function associated with increased circulating
Ang-(1–7) levels [112]. Overall, these data indicate that the
beneficial effects of ACE2 are, at least in part, mediated by
Ang-(1–7). Recently, we have demonstrated that activation
of endogenous ACE2 causes a dose-dependent hypotensive
effect in normotensive and hypertensive rats [113]. Also,
the response to Bk administration was augmented in rats
chronically treated with XNT, an ACE2 activator [113]. How-
ever, we were unable to demonstrate any significant effect of
XNT on blood pressure in response to the administration
of Ang II or Losartan in normotensive and hypertensive rats
(Figure 2).

4. Pulmonary ACE2/Ang-(1–7)/Mas Axis

In the past few years, the participation of the ACE2/Ang-
(1–7)/Mas axis in the establishment and progression of pul-
monary diseases has become evident. Indeed, the important
role of the RAS in the lung pathophysiology and the side
effects and pulmonary toxicity induced by the ACEi raised
the interest to evaluate the activation of the ACE2/Ang-
(1–7)/Mas axis as an alternative target to treat pulmonary
pathologies. Thus, it has been reported beneficial outcomes
induced by the activation of this axis in animal models
of acute respiratory distress syndrome (ARDS), pulmonary
hypertension (PH), fibrosis, and lung cancer [31, 37, 114–
117]. These studies pointed out that the imbalance between
the ACE/Ang II/AT1 and the ACE2/Ang-(1–7)/Mas axes of
the RAS might be relevant in lung diseases. Taking into
account that systemic hypotension is an important limitation
to the use of ACEi and ARBs in pulmonary patients, therapies
based on the ACE2/Ang-(1–7)/Mas axis emerge as a safe
and efficient approach since studies using the ACE2 activator
XNT or ACE2 gene transfer have shown that these strategies
induce beneficial pulmonary outcome without changes in
systemic blood pressure in rats and mice [39, 117, 118].

Imai and colleagues [37] demonstrated the role of ACE2
in ARDS pathogenesis. They found that a more severe ARDS
was reached in ACE2 knockout mice, and this phenotype
was reversed by double genetic deletion of the ACE2 and
ACE genes or by the treatment with recombinant human
ACE2 (rhACE2). Furthermore, Ang II levels were related



International Journal of Hypertension 5

0

10

20

30

40

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175

Dose (μg/Kg)

C
h

an
ge

s 
in

 b
lo

od
 p

re
ss

u
re

 (
m

m
H

g)

(a)

0

10

20

30

40

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175

Dose (μg/Kg)

C
h

an
ge

s 
in

 b
lo

od
 p

re
ss

u
re

 (
m

m
H

g)

(b)

−10

−5

0

5

10

10 20 30 40 50 60 70

Time (min)

WKY vehicle, n = 8
WKY XNT, n = 8

C
h

an
ge

s 
in

 b
lo

od
 p

re
ss

u
re

 (
m

m
H

g)

(c)

−10

−5

0

5

10

10 20 30 40 50 60 70

Time (min)

SHR vehicle, n = 5
SHR XNT, n = 6

C
h

an
ge

s 
in

 b
lo

od
 p

re
ss

u
re

 (
m

m
H

g)

(d)

Figure 2: Effects of Ang II and Losartan on arterial blood pressure of rats chronically treated with XNT. The responses to increasing doses
of Ang II were similar in vehicle- and XNT-treated (a) normotensive (Wistar-Kyoto rats—WKY) and (b) hypertensive (spontaneously
hypertensive rats—SHR) rats. Likewise, the response to Losartan (0.25 mg/kg) was similar in vehicle- and XNT-treated (c) normotensive
(WKY) and (d) hypertensive (SHRs) rats. The blood pressure was measured through a catheter inserted into the carotid artery and Ang II
and Losartan were administrated in bolus using the jugular vein.

to the severity of the lung injury. Of note, ACE2 is widely
expressed in the pulmonary endothelium, vasculature, and
pneumocytes [119, 120]. Also, rhACE2 inhibited the increase
of Ang II and TNF-α levels, attenuated the arterial hypoxemia
and PH, and ameliorated the distribution of the pulmonary
blood flow in lipopolysaccharide-induced lung injury in
piglets [121]. Therefore, these studies suggest that ACE2 is a
suitable target to arrest the development of ARDS in patients
at risk.

The stimulation of the ACE2/Ang-(1–7)/Mas axis has
been successful used to prevent and reverse PH and fibrosis
in animals. ACE2 activation using the compound XNT or
induction of ACE2 overexpression by gene transfer efficiently
prevented and, more importantly, reversed the increase of
the right systolic ventricular pressure (RSVP), pulmonary
fibrosis, imbalance of the RAS, and inflammation in animals
(rats and mice) with PH induced by monocrotaline (MCT)
or in rats with pulmonary fibrosis caused by bleomycin treat-
ment [39, 117, 118]. In keeping with these findings, Ang-(1–
7) gene transfer into the lungs triggered similar protective

actions in MCT-treated rats [39]. In addition, Ang-(1–7)
via Mas prevented the apoptosis of alveolar epithelial cells
and the Jun N-terminal kinase (JNK) activation induced by
bleomycin [122]. The involvement of the Ang-(1–7)/Mas in
PH was further evidenced by the observation that the XNT
effects are blocked by A-779 [117]. Furthermore, in both lung
specimens from patients with idiopathic pulmonary fibrosis
and from animals with bleomycin-induced pulmonary fibro-
sis were reported a reduction in mRNA, protein, and activity
of ACE2 with a reciprocal increase in Ang II level [116].

A growing body of studies has focused on the relevance
of the ACE2/Ang-(1–7)/Mas axis in the pulmonary cancer
pathophysiology. The protein expression of ACE2 is reduced
in non-small-cell lung carcinoma (NSCLC) along with an
increase in Ang II levels. Moreover, overexpression of ACE2
in cultured A549 lung cancer cells and in human lung
cancer xenografs inhibited the cell growth and the vascular
endothelial growth factor-a (VEGFa) expression induced by
Ang II [123, 124]. Gallagher and Tallant [125] evaluated the
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effects of several angiotensin peptides [Ang I, Ang II, Ang-
(2–8), Ang-(3–8), and Ang-(3–7)] in SK-LU-1 cancer cells
growth, and only Ang-(1–7) showed significant attenuation
of the DNA synthesis and proliferation. The antiproliferative
effect of Ang-(1–7) was mediated by its receptor Mas and
inhibition of the ERK1/2 pathway. Neither the blockage of
AT1 nor AT2 succeeded in inhibiting the action of Ang-(1–7).
In keeping with these data, the antiproliferative effect of Ang-
(1–7) was observed in human A549 lung tumor xenograft
growth along with a marked decrease in the vessel density
in mice through a mechanism involving cyclooxygenase-2
(COX-2) [126, 127]. Of note, in a nonrandomized phase I
clinical trial conducted by Petty and colleagues [38], sub-
cutaneous injections of Ang-(1–7) were administered in 18
patients with advanced solid tumors refractory to standard
therapy. Despite the mild adverse effects observed with the
Ang-(1–7) treatment, generally it was well tolerated. There
were no treatment-related deaths. Clinical benefits were
observed in 27% of the patients. Altogether, these studies
provide insights into the involvement of the ACE2/Ang-(1–
7)/Mas axis in lung cancer.

5. Pharmacological Therapeutic Strategies
Based on the ACE2/Ang-(1–7)/Mas Axis

Many advances have been achieved regarding the ther-
apeutic regulation of the RAS. Current therapies based
on the modulation of the RAS include the ACEi, ARBs,
and renin inhibitors. In general, these drugs prevent or
reverse endothelial dysfunction and atherosclerosis, reduce
cardiovascular mortality and morbidity of patients with
coronary artery disease, and hold antihypertensive effects
[128].

Classically, the mechanisms of action of the ACEi and
ARBs involve the blockade of the synthesis and actions of
Ang II, respectively. However, the RAS is a complex hor-
monal system and, consequently, other mechanisms are
likely implicated in the actions of these drugs [42, 86, 129].
They cause substantial increase in plasma levels of Ang-(1–
7), leading to the assumption that their clinical effects might
be partly mediated by this heptapeptide [42, 130]. Indeed, a
variety of effects of the ACEi and ARBs can be abolished or
attenuated by Mas antagonism, confirming the role of Ang-
(1–7) in the actions of these compounds [129, 131]. The
beneficial effects of Ang-(1–7) as well as its likely involvement
in the effects of the ACEi and ARBs represent a strong
evidence for the therapeutic potential of the activation of the
ACE2/Ang-(1–7)/Mas axis (Figure 3).

5.1. Ang-(1–7) Formulations. The beneficial effects of Ang-
(1–7) are well known; however, the therapeutic utilization of
this peptide is limited due to its unfavorable pharmacokinetic
properties. Ang-(1–7) has a short half-life (approximately
10 seconds) since it is rapidly cleaved by peptidases [132].
Furthermore, Ang-(1–7) is degraded during its passage
through the gastrointestinal tract when orally administrated.
Thus, new strategies are crucial to make feasible the clinical
application of Ang-(1–7).

Recently, a formulation based on the Ang-(1–7) included
into hydroxypropyl β-cyclodextrin [HPβCD/Ang-(1–7)] was
developed by Lula and colleagues [133]. Cyclodextrins are
pharmaceutical tools used for design and evaluation of
drug formulations, and they enhance the drug stability
and absorption across biological barriers and offer gastric
protection [134]. The amphiphilic character of cyclodex-
trins allows the possibility of formation of supramolecular
inclusion complexes stabilized by noncovalent interactions
with a variety of guest molecules [133, 134]. In this regard,
the formulation HPβCD/Ang-(1–7) allowed the oral admin-
istration of Ang-(1–7). Pharmacokinetic and functional
studies showed that oral HPβCD/Ang-(1–7) administration
significantly increases plasma Ang-(1–7) levels and pro-
motes an antithrombotic effect that was blunted in Mas
deficient mice [135]. Marques and colleagues [136] have
found that chronic oral administration of HPβCD/Ang-(1–
7) significantly attenuates the heart function impairment and
cardiac remodeling induced by isoproterenol treatment and
myocardial infarction in rats [136].

In addition, liposomal delivery systems represent an
alternative method to administer Ang-(1–7) [137]. Admin-
istration of liposomes containing Ang-(1–7) in rats led to
prolonged hypotensive effect for several days in contrast
to the response observed when the free peptide was used
[137, 138].

A strategy used to protect the Ang-(1–7) against prote-
olytic degradation was proposed by Kluskens and coworkers
[139]. Using the ability of prokaryotes to cyclize peptides,
they synthesized a cyclic Ang-(1–7) derivative [thioether-
bridged Ang-(1–7)] which presented an increased stability in
homogenates of different organs and plasma and enhanced
the Ang-(1–7) bioavailability in rats [139]. Furthermore,
cyclized Ang-(1–7) induced a relaxation in precontracted
aorta rings of rats which was blocked by the Ang-(1–7)
receptor antagonist D-Pro7-Ang-(1–7), providing evidence
that cyclized Ang-(1–7) also interacts with Mas [139].

5.2. Synthetic Mas Receptor Agonists. AVE 0991 was the first
nonpeptide synthetic compound developed with the inten-
tion of stimulating the Mas receptor. This compound mimics
the Ang-(1–7) effects in several organs such as vessels [140,
141], kidney [101], and heart [142, 143]. Similar to Ang-
(1–7), AVE 0991 induced a vasodilation effect which was
absent in aortic rings of Mas-deficient mice [140]. Moreover,
its effects in aortic rings were blocked by the two Ang-(1–
7) receptor antagonists, A-779 and D-Pro7-Ang-(1–7) [140].
AVE 0991 potentiated the acetylcholine-induced vasodilation
in conscious normotensive rats, and this effect was abolished
by A-779 and L-NAME [102]. Similarly, it was able to
increase the hypotensive effect of Bk in normotensive rats,
and A-779 also blocked this effect [107]. Ferreira et al.
[142, 143] reported that AVE 0991 protects the heart against
cardiac dysfunction and remodeling caused by isoproterenol
treatment or by myocardial infarction in rats [142, 143]. In
Mas-transfected cells, AVE 0991 induced NO release which
was blunted by A-779 and not by AT2 or AT1 antagonists
[101]. All these data support the concept that AVE 0991 is
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Figure 3: Schematic diagram showing the therapeutic strategies to modulate the activity of the renin-angiotensin system (RAS). In addition
to the classical RAS blockers, that is, ACE inhibitors and AT1 receptor blockers, the figure highlights the renin inhibitors, the Ang-(1–7)
formulations [HPβCD/Ang-(1-7) and cyclic Ang-(1-7)], the synthetic Mas receptor agonists (AVE 0991 and CGEN-856S), and the ACE2
activator (XNT). ACE: angiotensin-converting enzyme; AT1: Ang II type 1 receptor; AT2: Ang II type 2 receptor; Mas: Ang-(1–7) receptor;
NEP: neutral-endopeptidase 24.11.

an Ang-(1–7) mimetic and that its actions are mediated by
the interaction with Mas.

Using a computational discovery platform for predicting
novel naturally occurring peptides that may activate GPCR,
two novel peptides, designated as CGEN-856 and CGEN-
857, with amino acid sequence unrelated to angiotensin
peptides, were found to display high specificity for Mas [23].
These peptides elicited Ca+2 influx in CHO cells overex-
pressing Mas without any activity in AT1 or AT2 receptors
[144]. CGEN-856S, a derivative of the CGEN-856 peptide,
induced beneficial cardiovascular effects similar to those
caused by Ang-(1–7) [23]. This compound competes with
Ang-(1–7) for the same bind site in Mas-transfected cells.
Furthermore, similar to Ang-(1–7), CGEN-856S produced a
vasodilation effect which was absence in Mas-deficient mice,
indicating that this compound also acts via Mas [23]. This
was confirmed by the inhibition of the CGEN-856S effects

by the Mas antagonist A-779. Importantly, Savergnini et al.
[23] showed that CGEN-856S promotes antiarrhythmogenic
effects and produces a small dose-dependent decrease in
arterial pressure of conscious SHR [23].

5.3. ACE2 Activators. A new approach addressing the ther-
apeutic potential of the activation of the ACE2/Ang-(1–
7)/Mas axis was proposed by Hernández Prada et al.
[113]. Based on the crystal structure of ACE2 and using a
virtual screening strategy, it was identified small molecules
that may interact with this enzyme leading to changes in
its conformation and, consequently, enhancing its activity
[113]. Thus, the ACE2 activator, namely XNT, was identified
and its administration in SHR decreased blood pressure,
induced an improvement in cardiac function, and reversed
the myocardial and perivascular fibrosis observed in these
animals [48, 113]. The beneficial effects of XNT were also
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observed in rats with PH induced by MCT [117]. Further-
more, this compound attenuated the thrombus formation
and reduced the platelet attachment to vessels in hypertensive
rats [145].

It appears that the pharmacological activation of ACE2
promotes its beneficial effects due to an increased Ang-(1–7)
production with concomitant degradation of Ang II. In fact,
coadministration of A-779 abolished the protective effects
of XNT on PH [117]. In addition, the antifibrotic effect of
XNT observed in hearts of SHR was associated with increases
in cardiac Ang-(1–7) expression [48]. However, it is also
pertinent to point out that off-target effects of XNT on these
beneficial outcomes cannot be ruled out at the present time.

6. Conclusions

The complexity of the RAS is far beyond we could suspect
few years ago. There is growing evidence that changes in
the novel components of the RAS [Ang-(1–7), ACE2, and
Mas] may take part of the establishment and progression of
cardiovascular and respiratory diseases. Importantly, these
new components of the RAS, due to their counter regulatory
actions, are candidates to serve as a concept to develop new
cardiovascular and respiratory drugs.
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